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I. INTRODUCTION

This paper investigates several methods of allocating a fixed number of rounds to optim-
ize the probability that a direct-fire, heliborn gun will hit another helicopter. These methods
are more succinctly called "strategies," or "policies."

In order to hit the target, many sources of error need to be controlled. (The word
"error," as used here, is the distance between the actual point of impact and the intended
point of impact. It does not mean simply a "mistake" on the part of the gunner, although a
mistake by the gunner would be a source of error.) The distance between the two aircraft
must be estimated, and with that distance the time-of-flight for a round is computed. From
the time-of-flight and an estimate of the target's relative velocity (speed and direction), the
target's location at impact is then predicted. Wind speed measurements are used to adjust the
offset angle, at which to aim the gun.

This paper examines the sources of three broad types of errors: mean-point-of-impact
(MPI) errors, round-to-round errors, and errors due to vibration.

1. MPI errors. These errors have a high correlation across shots, i.e., roughly the same
error is found among all shots when the gun is aimed at a given point. Examples are an
improper alignment of the sighting system, and a mistake in estimating the wind speed.
When the MPI error is less than the size of the target, the pattern of shots will cluster
around a point some distance from the intended point of impact (e.g., the target center).
When the MPI error exceeds the size of the target, the center of the pattern will simply
miss the target; thus, it is possible that aiming directly at the target will guarantee a miss.
MPI errors are also called "bias" errors.

2. Round-to-round errors. Examples arise from the differences in the ammunition from
round to round, and from variations in the wind speed from round to round. Such errors
are also called "precision" or "dispersion" errors.

3. Vibrational errors. The oscillations of the gun-barrel produced by vibrations in the air-
craft gives rise to these errors. The oscillations are the result of the gun blasts' rever-
berations throughout the aircraft, the effects of the rotor blade (for a helicopter), and
other sources of vibratory mechanical energy.

It is the thesis of this paper that, through a judicious selection of "aimpoints," it is possi-
ble to maximize the probability of hitting the target, for a given number of rounds. The
gunner (or more generally, the fire-control system) is responsible for selecting the aimpoints.

The geometry used is as follows:

1. Consider the line connecting the gun of the firing helicopter to the predicted location of
the target helicopter.



2. Consider the plane perpendicular to the line described above in (1.), intersecting the
predicted target location.

3. The points in this plane will be referred to as aimpoints. The origin is the predicted tar-
get location.

4. An aimpoint is uniquely defined by its deviation, in azimuth and elevation, from the ori-
gin.

This paper discusses a method that generates an optimal set of aimpoints for a fixed
number of rounds, and then considers the problems caused by vibrational errors. Starting
with a simple case and progressively generalizing the results, it leads to a theoretically optim-
ized solution This solution denotes the upper bound in performance for any firing policy, or
strategy. This paper concludes with a comparison and evaluation of several alternative firing
strategies.

II. BACKGROUND

The delivery errors of various weapons have been successfully modeled as bivariate, nor-
mal, and random variables.

" In 1941 Detrick, Kent, and Smith (1) published a paper describing the optimal spacing of
bombs. In that paper they developed the idea of maximizing the probability of hitting
the target at least once. They confined their discussion to the one-dimensional case.

* In 1945 Kolmogorov, Svesnikov, and Gubler (2) published a collection of articles on the
selection of aimpoints for the one-, two-, and three-dimeisional cases. In these papers
"artificial dispersion," caused by using different aimpoints or by increasing the round-to-
round firing error, is briefly examined for its potential to increase the amount of target
damage. The damage caused by several shots fired at different aimpoints can be calcu-
lated based on (a) damage function, (b) MPI errors, (c) precision errors, and (d) aim-
points. Chapter Twenty of Army Weapons System Analysis (3) mentions several
difficulties associated with this type of problem and suggests that the ultimate solutions
must be sought case-by-case.

* Kisi (4) discussed the idea of increasing artificial dispersion by increasing the precision
error.

* Fendrikov and Yakolev (5) mentioned an aimpoint strategy for indirect artillery fire.

" Sandmeyer (6,7) found the optimal aimpoint policy for indirect artillery fire. He showed
his method is superior to both the method of Fendrikov and Yakolev and the method
used by the Battery Computer System (currentiy in use by the U.S. artillery); and he
established a theoretical upper bound for the optimal aimpoint policy. This paper fol-
lows the method of Sandmeyer.
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Sandmeyer (6) applies a method previously applied to the problem of optimal search to the
selection of optimal aimpoints. A discussion of the theory in the context of that problem fol-
lows. The basic task of optimal search is illustrated by the following: Suppose someone has
lost a thimble and has only a fixed amount of time to look for it. How should this time be
spent in order to maximize the probability of finding the thimble? Obviously the search time
will be more efficiently spent if the searcher can approximate the likelihood that it is in the
kitchen, the dining room, or the utility closet, for example. This concept is more formally
treated by the use of the notions of the "Target-Location Density," or TLD, and the "detecton
function," or DF.

* The TLD is a function that quantifies the probability that a target will be within a
specific incremental area. The integral of this function over an area gives the probability
that the target is in that area.

0 The DF is the probability that a searcher, looking at an incremental area, will detect a
target located there given that the target is indeed there. Thus the DF measures the
efficiency of the searcher. (When the DF is constant, it means that the searcher is no
bettei an observer -- and no worse -- when he is looking for the thimble in the dining
room than he is when looking in the utility closet, for example. Again, when the DF is
1/2, then the searcher has a fifty-fifty chance of spotting the thimble, when he is looking
in the room where the thimble actually is).

Koopman (8, 9, 10) discusses these issues in detail and relates some of his experiences in
a Naval Operations Research group during World War II. Stone (11) discusses methods of
search that are optimized over "time." Koopnan (12) uses a theorem of Gibbs (13) to
describe the theoretical optimal allocation of "effort" for a search. Koopman's technique
divides the TLD into two regions: a region to be searched, and a region to be neglected. In
the region to be searched, the amount of effort applied to each incremental area is function-
ally proportional to the TLD in that area. When the search is done, if the target has not been
found, then the resulting modified TLD will be flat, or constant, in the area that was searched
and will be lower (or equal) in the neglected region. Figure 1 illustrates this process. In Fig-
ure la the original TLD is shown. Figure lb shows the a posteriori TLD.

For a constant-valued detection function, this technique amounts to finding the height of
a plane, parallel to the X-Y plane, such that the mass of the TLD above the plane
"corresponds to" the total search-effort available (this plane will be referred to as the cut-off
plane). This surface above the upper plane can be called the "optimal-effort surface." The
projection of this mass onto the X-Y plane (i.e., the removal of the mass between the planes)
will indicate the preferred areas to be searched. The amount of search in each incremental
area is proportional to the TLD above that area. The effect of an optimal search, as said
above, is a flattening of the original TLD. The optimal-effort surface can be difficult to find
for many TLDs, including most nonexponential detection functions. The details associated
with satisfying the requirements of the technique are contained in the examples given below.

The "optimal search" techniques can be directly applied to the "optimal aimpoint" prob-
lem. The meaning of the TLD does not change. The meaning of the detection function is
changed from the probability of finding the target, given that it is in the region being
searched, to the probability of hitting the target, given that it is in the region being shot at.
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Figure la. Target location density before shooting.

Figure lb. Target location density after shooting.
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The meaning of the "amount of TLD above the two parallel planes" is changed from the gen-
eral "amount of effort available for the search" to the "amount of ammunition available for
the gun." The "optimal-ammunition surface" is again found by using Koopman's application
of Gibbs' theorem. (This procedure could likewise be applied to probability-of-kill problems:
simply replace "hit" with "kill" in the foregoing terms.)

To the optimal-aimpoint problem, Sandmeyer added the influence of round-to-round
and MPI errors. The work of Stone can be applied so that P{hit} is always maximized for the
number of rounds fired.

m. DISCRETE CASE

Example 1.

As an illustration of the above ideas, three methods for solving a single problem will be
discussed. Consider a 3x3 matrix, where the value in cell (ij) [i and j running from 1 to 3]
represents the probability that the target is in cell (ij).

i=1 0.20 0.10 0.05
=2 0.10 0.30 0.05
=3 0.05 0.10 0.05

j =1 =2 =3

The probability that the target is located in the region corresponding to cell (2,2) is 0.3.
Assume there is a fifty-percent chance of hitting the target if a shot is fired into the cell.
(That is, assume that the "detection function" is 1/2 for every cell). We assume zero error in
delivery: either the weapon system is perfect in its ability to hit that cell or the area of the cell
is large compared to the delivery error. What sort of firing policy will maximize the probabil-
ity of hit for twenty rounds?

1. Method One: Proceed sequentially using a maximum-likelihood method; fire each shot at
the area with the highest TLD. After each shot, replace the -eli's TID with the probability
that the target is still there but unhit. That is, replace the original TLD [call it TLDoJ with
"TLDo (1-DF)," or, here, (0.3 x 1/2 =) 0.15. (That is, some of the probability is moved to the
category of target hit.) The effects of a shot into a particular cell can be thought of in two
ways either as transferring probability from a particular cell to the category of target hit or as
a reduction in the probability that the target remains unhit in the cell. This paper uses the
latter interpretation. For the allocation of the twenty rounds, the procedure would follow this
pattern:

Shot 1: Choose cell (2,2), since it contains the greatest TLD.
Replace 0.3 with (0.5 x 0.3 =) 0.15.
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Shot 2: Choose cell (1,1), since it now contains the greatest TLD.
Replace 0.2 with (0.5 x 0.2 =) 0.1.

Shot 3: Choose cell (2,2), since it now contains the greatest TLD.
Replace 0.15 with (0.5 x 0.15 =) 0.075

Now several cells have the equal maximum probability of 0.10. Here, the gunner can
randomly choose any one of those cells. (When this possibility exists there may be no unique
optimal solution. If the gunner runs out of ammunition before all these maximums are
attacked, one can only speak of "an" optimal solution.)

Method One not only indicates the number of shots to be delivered to each cell but also
indicates the best sequence for delivery. This straightforward method can be used when one
has a discrete TLD with "zero" delivery-error.

2. Method Two. This method introduces the techniques used when one has a continuous
TLD. The method is to find the amount of ammunition to apply to the highest-valued cell to
reduce it to the level of the cell containing the next lower value. Then apply the ammunition
to both of those cells until level of the next lower cell is reached. In this continuous-TLD
situation, we assume that the ammunition effort is also continuous (i.e., that the ammunition
can be fired in fractional amounts). This assumption is necessary in order to calculate the
optimal-ammunition surface. As an approximate "practical" interpretation of the assumption,
one could consider applying "bursts" rather than single rounds to a given area, where the
length of the burst is adjustable, and a shorter burst conserves ammunition that can be used
in later bursts. The infantryman has an apt expression for this concept when he "hoses down"
an area.

If a full burst were fired at cell (2,2), then the probability that the target was there but
was not hit is 0.15. Since this value is lower than 0.2, the gunner has gone too far. The proper
amount of ammunition to have fired at cell (2,2) was a fractional amount, enough to have
reduced to TLD to 0.2 and no lower. Thus:

Burst 1: Reduce the TLD of cell (2,2) to the TLD of cell (1,1)

0.2 = 0.3*0.5**n -+ n = 0.585.

As a realistic interpretation, if cell (2,2) were an acre lot with the target somewhere
within it, and a full burst were 1,000 bullets, it would be optimal for the gunner to fire 585
bullets into the acre and no more, until he began engaging this cell in conjunction with
another cell.

Note here, that the DF of 1/2 is based on the presumption of the full burst: If the
gunner fires 1,000 rounds into the acre lot, then the chances of hitting the target in it are 1/2.
Reasonably, then, if he fires only 585 rounds into the area, his chances of hitting the target
are less than 1/2. In effect, the use of the fractional burst is a way of altering the DF.
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(Observe, too, that this exercise is applying the technique for a continuous TLD to a
situation in which the TLD is actually discrete.)

Burst 2: Find the amount of effort that will reduce 0.2 to 0.1

0.1 = 0.2"0.5**n --+ n = 1

Burst 3: Find the amount of effort that will reduce 0.1 to 0.05

0.05 = 0.1*0.5**n --+ n = 1

The derivation thus far has not made use of the fact that the gunner's ammunition is lim-
ited. He has so many bursts and not more. In this continuous case, the optimal allocation of
ammunition can now be derived by means of an "Effort Matrix" expressed in terms of "E" -
the "minimal-effort value." The value in each cell represents the effort to be applied to the
corresponding area.

For the Effort Matrix corresponding to the given problem, each of the cells with TLDs
of 0.05 has some undetermined amount of effort E in it. The cells corresponding to the TLD
cells with entries of 0.1 have one full unit more of effort in them, so they carry the value 1 + E.
The cell with the TLD value of 0.2 has yet one more unit of effort, so its entry is 2+E.
Finally, the cell with a value of 0.3 has an additional 0.58 units of effort (rounded to two
decimal places). Its entry is 2.58 + E.

2+E 1+E E
1+E 2.58+E E
E 1+E E

The total effort expended is to be equal to twenty "bursts" (continuing the analogy that
one burst is 1,000 rounds, we could assume the gunner has 20,000 rounds available), so by
summing the cells of the matrix and setting the total equal to twenty bursts, we can find the
optimal effort for each cell:

20 - 9E + 7.58 (Equivalently: 20,000 = 9E + 7,580
E = 1.38 bursts E = 1,380 bullets)

Thus, where the length of the burst is variable, the optimal solution is:

3,380 2,380 1,380
2,380 3,960 1,380
1,380 2,380 1,380

It will be seen that the total number of bullets expended is 20,000 and, of course, that the allo-
cation has not been in 1000-round bursts.

Returning to the original case of 20 rounds, if the ammunition could not be subdivided, it
would be necessary to enter integer numbers of rounds in each cell. As an approximation, we
would round off the values in the cells to integer amounts and make further adjustments to
ensure that the sum is twenty. One plausible solution in this case is
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3 3 1
3 4 1
1 3 1

3. Method Three. This method uses the ideas of Koopman; Gibbs (1928) originally applied
these ideas to a physics problem. Koopman derives two formulas that can be used to find the
optimal munition surface. The first formula is used to find the area to shoot at. After the
area to shoot at has been defined, the second formula is used to determine the amount of
munition to apply to each point. This method is valid when the TLD is continuous and is a
formalization of the technique used in Method 2. The equations used are:

] = ff [(In (p(xy) w(xy)) - In.X)/w(xy)] dxdy (1)

A

and
1 (n[p(x,y) w(x,y) /  2

42(x,y) =In I(Y 1(Y (2)
wy) (xy) A

0 is the total munition effort 4 (xy) is the munition density at x,y

p(x,y) is the probability of the target being at x,y

A is the height of the cut off plane

A is the fire zone

e'w(" 'y) is the probability of missing a target located at (xy).

Equation 1 divides the TLD into the two areas based on the number of munitions avail-
able. Equation 2 is used to determine the amount of munition to apply to each point. As
applied to the current example the steps are as follows:

First, express the probability of a miss as an exponential. As we fire more shots into a
specific region the returns on each shot (probability of hit) diminish in proportion to the pro-
bability that the target is unhit in that region. This diminishing rate of return is captured by
the exponential function.

Second, solve Equation 1 for A. A is the height of the plane that cuts the TLD at the level
appropriate for that amount of effort. (Note that integration can be replaced by summation
for this discrete case).

Third, find the amount of effort at each of the nine points using Equation 2.

Fourth, find an integer solution.
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Implementing these steps yields the following:

e'("Y) = Pk -- w(xy) = -ln.5 = .6931

Note that w(xy) is constant and can be replaced by w.
920 = F. (1n (pi * w) -In,)/w

i-i

-20w-Elnpiw
nA = -- =.0133

-9

1 _PW

Using i -1 in 1 we get the optimal munition matrix
w '

3.3819 2.3818 1.3817
2.3818 3.9669 1.3817
1.3817 2.3818 1.3817

Integerization of this solution yields the same result as the previous example. Note that this
method will work for a continuous TLD.

4. Optimal Probability of Hit

To find the p(hit 120 rounds and optimal) for all twenty rounds first observe that the pro-
bability mass of the original distribution left in each cell is the same, i.e.,

For cell (2,2) 3.53 9669 = .01919
For cell (1,1) .2*.533819 = .01919
For the cells containing .1 .1".523818 = .01919
For the cells containing .05 .05*.513817 = .01919

Visualize a plane cutting through the original distribution at .01919. The probability the tar-
get was hit is the sum of the density above this plane, or the complement of the mass under
the plane and is equal to 1-.01919 x 9 =.82729.

This optimal value for a probability of a hit is physically unrealizable since munitions cannot
be fired in fractional amounts. If we assume the best approximation to the optimal munition
density is expressed by the following matrix:

3 3 1
3 4 1
1 3 1 ,

then we can find the probability of hitting by adding the probabilities of missing the target in
each cell together and subtracting the result from 1.
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For cell (1,1) .20 .53 - .025
For cell (1,2) .1* .53 = .0125
For cell (1,3) .05* .51 = .025
For cell (2,1) .1* .5 3 = .0125
For cell (Z2) .3* .50 = .01875
For cell (2,3) .05* .51 = .025
For cell (3,1) .05* .51 = .025
For cell (3,2) .14 53 - .0125
For cell (3,3) .05* .51 = 025

Then the probability of hitting the target would be .81875.

5. Overkill

Overkill occurs when the fire control system or gunner fires excessively into one section
of the TLD. The amount of overkill in a particular section would have been more profitably
applied to another area of the TLD. As an example of overkill consider the probability of hit
if all twenty rounds are fired into cell (2,2). The probability of the target surviving in cell (2,2)
would be 2.86 x 10"7. The total probability of hit would be approximately .3. The aimingpol-
icy of shooting at the center of the TLD would reduce the probability of a hit from its optimal
value of .82 to .3.

This concludes our look at the discrete case.

IV. CONTINUOUS CASE

In the continuous case Koopman's result guides us in finding the value for the cutoff
plane for a given amount of effort. In using this equation note that the munition surface must
be greater than zero at all points; we cannot fire negative amounts of munition at an unlikely
area and counterbalance this by applying more munition to more probable area. The value z
= In (X) is the cutoff plane of the surface In (p(xy) w(xy)). In (X) and the total amount of
munition expended vary inversely. All regions where In (p(x,y) w) < In (A) are ignored.
Assuming w(x,y) = w and In (A) can be expressed as In (p(x',y') w) Equation 1 can be
expressed as

4 = ff[ln (p(xy) w) - In (p(x-,y-) w)]dxdy/w. (3)
A

This can be rewritten as

w 0 = ff [In (p(xy)) + In w - ln(p(x',y')) - In w]dxdy (4)

A

= ff (In p(x,y) - In p(x',y'))dxdy

A

In this situation Equation 4 shows In A is inversely related to w. Equation 2 can be written as

I
O(x,y) = - [In p(xy) - In p(x',y')]. (5)

w
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This indicates the amount of munition applied to each point is proportional to the difference

between the TLD and the cutoff plane. These ideas are applied to the following problem.

Example 2:

Given a circular normal TLD and constant hit function, describe the optimal munition
surface. The TLD is described by

2 2
p(x,y) = (2 r o2)- 1 e

Taking the natural log we have

In p(xy) = In (2 r 2)-1 +

2o2.
Rewriting Equation 1 for this problem we have

21 -(x2+y)
4=ff ln(2 2ro) + + Inw-nA] dxdy/w.

A 202

The integrand is the equation of a concave downward parabaloid.

Next change to polar coordinates
2rAR 2  

(wit-= ff [In(2 '2)-' + 2+ In-in1 RdRd9. (6)
00 2 2a

The value in brackets as previously mentioned must be greater or equal to zero. In terms of
A we will use the following expression for In A .2

In _ In (2 7r2) +- + Inw.
22

Equation 6 can be written
2-A "R2  

2)-1 -A2  w
wO f-ff n(27r2)- + + inw-n(2ro -- -Inw RdRd

A 202 202 ]

00 2]drd
2Af-f + dO

2x 4 4 2

8 2 4 2 1
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-1 1/2

-+. =(2wo 2 1 eU W.

The optimal munition surface will be zero outside the circle of radius A; within the circle the
munition density is given by Equation 2 which simplifies to

(A -R)/(w 2 )
The probability of a hit for this example can be found by the following method. Note from
Figure 1 that P(hit) is the volume bound by the curve p(R,O) and the cutoff plane z = A or the
difference between Figure la and lb. The volume under the circular normal distribution is
given by

-R
2

1 a

This volume contains a cylinder of radius A and height p(A); so we must remove this volume
from the previous value. The volume of the cylinder is

1/2 -1 ( w'2

7rA 2 h = 2rae

so the expression for p(hit) is
-1 ( W 112

- 1 ( )1/2 a ,r (7)

Next we extend this problem to quantify the relationship between intelligence or
improved target location knowledge and firing more rounds. Assume a circular normal tttWet
location error with sigma of 100m. Let w = .5 (the probability of missing the target is e" or
.61) and suppose there are ten rounds, each round having an effective radius of thirty meters.
Notice that both the standard deviation of the TLD and the total amount of munition effort
need to be in the same units; thus the total effort needs to be an area. For this example the
total effort available (0) is the number of rounds multiplied by the area each round destroys
or 10 * r * 302. From Equation 7 above the probability of hit is

1/2 -1 ( M50)/2

1- 1+ [ 1/2] e(100 = .146

100 V-

If we instead fire 20 rounds, the probability of hit is .246; however, if we had reduced the tar-
get location error by fifty percent so sigma was 50m for 10 shots the p(hit) would be .388. A
reduction in sigma to 70 meters increases the probability of hit to the same level as doubling
the number of rounds. These observations give guidelines for analysis of the benefits of intel-
ligence versus increasing the number of munitions.

12



V. GENERAL CASE

Guns do not usually hit the exact spot at which they aim. Errors associated with this can
be divided into the two categories of MPI errors and precision errors. (Errors associated
with vibration will be discussed in Part II). Sandmeyer (1985) discusses these errors and how
they effect the optimal munition density. In the direct fire case both the TLD and MPI errors
combine to give a convoluted TLD; thus the magnitude of the MPI errors diffuse our
knowledge of the TLD. Intuitively MPI errors can be considered a form of target uncertainty,
since the fire control system cannot determine the center of impact in relation to the target
before the shots are fired. In effect the target was thought to be at the center of impact but is
at a different location. The precision errors spread out the effect of the hit or kill function by
distributing it over a larger area; a convolution of the kill function and the precision errors
yields a modified kill function that can be used to find an optimal munition density.

Probability of Hit

To determine the probability of hitting the target given its location, both the size of the
target and the precision errors are needed. If the location of the target is known and MPI
errors are ignored, the probability of hitting the target can be calculated by integrating the
precision errors over the area of the target. This is expressed mathematically as follows:

ET - elevation dimension of the target

AT - azimuth dimension of the target

g(A,E) - the precision error distribution in azimuth and elevation units
AT/2 Er/2

f f g(AE) dE dA
-AT/2 -ET/2

Precision errors are almost exclusively modeled by a bivariate normal; thus, there are many
documented methods to calculate their value.

Example 3:

Suppose a target 2.5m by 3.5m is 2kn from the shooter. Assume the precision error is 5
mils in both azimuth and elevation. Then what is the probability of hitting the target if the
gun is properly aimed? Recall that sin e = 0 when O is small and e is measured in radians.
Two methods will be shown.

Method One

Solve the problem in meters:

At a range of 2km, 5mils is equal to 10 meters

sin (5 mils) = .005

.005 = N/2000 N=10

13



1.75 1.25 -1.(A 2 +E )

f f e .A0035

-1.75-125 2irlOO

Method Two

Convert the size of the target to mils and solve
2.5 = 1.25mils

2000
3.5.- = 1.75mils

2000
.875 625 -1 (A' +EA)1 2 2
f f - ir(25) e 2 dEdA= .0035

-.875 -.625 2

Effects of a Shot

To calculate the probability of hitting a target for a particular shot, the probability of the
shot hitting each position of the TLD should be multipled by the probability that the target
area covered that location. For a rectangular target this amounts to integrating the TLD over
the area of the target and multiplying this value by the value of the precision function at that
point. If this is done for all values of the precision function, then the expected damage for a
shot fired at a given point can be calculated.

g(XY) represent the precision errors X azimuth
Y elevation

h(AE) represent the TLD A azimuth
with MPI errors included E elevation

(a,b) aimpoint is azimuth, elevation units

oo oo Y+E/2X+A/2

f f f f g(X-a,Y-b)h(AE)dAdEdxdy

-co -co Y-E/2 X-A/2

If the convoluted TLD is large compared to the size of the target then the average value of
the TLD over the target area will be very close to the value at the center of the target rectan-
gle; thus in some instances the above formula can be approximated by

14



00 00

f f g(X- a, Y- b)h (xy) AT E-r dxdy

-00 -00

AT is the azimuth dimension of the target.
ET is the elevation dimension of the target.

VI. PARAMETRIC STUDY PRECISION ERROR

A study was done to observe the effects of the precision errors on the optimal aimpoint
pattern and effect. The MPI errors were fixed at 5 mils. and the 2.5 x 3.5 target was assumed
to be 2 kilometers away. In each case 60 shots were used. The precision errors were varied
to find the point at which it becomes pragmatic to use multiple aimpoints. The investigation
was based on a software package developed by Richard Sandmeyer.

Software

A collection of subroutines and functions was developed to find the optimal aimpoint
pattern and assess the effects of the pattern. The original version was designed for the Cyber
and was modified to run on the Cray. The new version was validated by comparing results to
previous results from the Cyber. The software has been documented, but an understanding
of the software requires one to understand both the theory of the method, many sophisticated
numerical analysis techniques, and methods of computer science. Two types of damage func-
tions are supported by this software: the Von Nuemann-Carleton damage function and a
"cookie-cutter" damage function. For a discussion of these see Army Weapons System
Analysis, Chapter 20. The Von Nuemann-Carleton damage function was used in this study.
An "equivalent" representation of damage was done using the cookie-cutter method and the
results were in agreement. The inputs to the model are as follows:

Standard deviation of MPI elevation error - 10m

Standard deviation of MPI azimuth error - 10mn

Standard deviation of precision elevation error - varied

Standard deviation of precision azimuth error - varied

Carleton Damage Function Parameters

Ratio of axes .71

Max value of junction 1.00

Lethal area 8.75
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Target Dimensions

Elevation Range 3.5m

Azimuth 2.5m

Seven cases were run, both the azimuth and elevation precision error standard devia-
tions were set to the same value in each case.

The results are displayed graphically. Figure 2 shows the actual effect achieved as a
function of precision error. Figure 3 shows the ratio of the achieved effects to a theoretical
upperbound as a function of precision error. Figure 4 gives the number of aimpoints as a
function of the precision errors. Note that when the precision errors are equal to or greater
than the MPI errors there is only one aimpoint, so the best policy is to shoot where you think
the target is. This chart also indicates the increase in the number of aimpoints is exponential
as the precision errors decrease.

Using the aimpoints for a precision - error of two meters, a monte carlo simulation was
used to observe the effectiveness of the pattern. This result was in close agreement with
expected result. The monte carlo model was also run with every shot aimed at the center.
The use of multiple aimpoints was 2.8 times more effective in hitting the target.

Discussion

The results show that if the precision errors are greater than the MPI errors the best
policy is to fire at the center of the target. This results in lower performance as the precision
errors increase since the shots become more likely to hit a spot where the target location den-
sity has a low value. As the precision error decreases firing all the shots at one location results
in overkill for that area. Some of these shots could be used to cover a larger area of the tar-
get location density. After the precision errors fell to half the value of the MPI errors, there
was a small increase in performance and a large increase in the number of aimpoints. Part H1
of this paper will investigate the order of firing and different firing policies, investigate the
effects of the target at different ranges, and look at different MPI errors.

VII. FUTURE INVESTIGATIONS

The methods and techniques needed to find optimal aimpoint patterns have been dis-
cussed and their use has been demonstrated. Other areas that can be investigated are:

a) The effects of target size

b) The effects of changing the MPI errors

c) The effects of vibrational errors

16



The methods discussed could be used to find the response surface around an operating
point. Questions can be answered that address the desirability of reducing precision errors to
a certain level and whether the increase in system complexity is justified by the cost increase.
Further analysis needs to be done to find the average number of shots till the first hit given a
hit occurs for various aimpoint policies.

Multiple aimpoints are detrimental for small targets when the precision errors exceed
the MPI errors. Studies can be performed to evaluate the effects of reducing target uncer-
tainty versus improving the precision of the shot based on financial constraints. Part IT of this
paper will discuss these and other issues for the case of a heliborn gun firing at a helicopter.

17



V-1

0 i)

0
L- L

0 b-40

CD)

LI 0

00 -

* L 0

-D

0.)a)
CD %00

0-%1- o.

LU (JD

a) c

0 ~

U)~a t V (

WI 4) d



(U

0

C LS

C3I

0 U) 0

C))
O~LO

wC

CD (D c
puno iadn o 'sl)aja *Inlo lb il)

L9



4- 0

(1) L

0 cm

0

LL

CE L1
z (U:

CDa

200



REFERENCES

1. Dederick, Kent, Smith, "Optimum Spacing of Bombs or Shots in the Presence of Sys-
tematic Erors," BRL-TR-241.

2. Kolmogrov, AN., "Collection of Articles on the Theory of Firing," AD 762585.

3. Army Weapon System Analysis Part 1, 706-101.

4. Kisi, T., "Optimization of Artificial Dispersion in Salvo Firing," AD A140475.

5. Fendrikov, N.M., and Yakavelev, V.I., "Methods for Calculating Combat Effectiveness
of Armament," JPRS-56631.

6. Sandmeyer, R., "Optimal Aiming of Artillery Indirect Fire: Part 1: Statement of Prob-
lem and Upper Bound on Effectiveness," unpublished report.

7. Sandmeyer, R., "Optimal Aiming of Artillery Indirect Fire," Army Science Conference,
1986.

8. Koopman, B.O., 'Theory of Search: Part 1 - Kinematic Bases," Operations Research,
Vol 4, pp324-346.

9. Koopman, B.O., 'Theory of Search: Part 2 - Target Detection," Operations Research,
Vol 4, pp503-531.

10. Koopman, B.O., 'Theory of Search: Part 3 - The Optimum Distribution of Searching
Effort," Operations Research, Vol 5, pp613-626.

11. Stone, LD., 'Theory of Optimal Search," Academic Press 1975.

12. Koopman, B.O., "Search and Its Optimization," American Mathematical Monthly, Vol
86, No. 7.

13. Gibbs, J.W., "Collected Works," Vol 1, Longman and Green 1928.



INTENTONALLY LEFT BLANK.

22



No of No of
co Qzmwi Qvc m

Office of the Secretary of Defense 1 Director
OUSD(A) US Army Aviation Research
Director, Live Fire Testing and Technology Activity
ATIN: James F. O'Bryon Ames Research Center
Washington, DC 20301-3110 Moffeat Field, CA 94035-1099

2 Administrator 1 Commander
Defense Technical Info Center US Army Mbsic Commaud
ATTN: DTIC-DDA ATIN: AMSMI-RD.CS-R (DOC)
Cameron Station Redstone Arsenal, AL 35898-5010
Alexandria, VA 22304-6145

1 Commander
IHQDA (SARD-TR) US Army Tank-Automotive Command
WASH DC 20310-0001 ATTN: AMSTA-TSL (Technical Library)

Warren, MI 48397-5000
Commander
US Army Materiel Command I Director
ATTN: AMCDRA-ST US Army TRADOC Analysis Command
5001 Eisenhower Avenue ATTN: ATAA-SL
Alexandria, VA 22333-0001 White Sands Missile Range, NM 88002-5502

Commander (o-l -afy) 1 Commandant
US Army Laboratory Command US Army Infantry School
ATTN: AMSLC-DL ATIN: ATSH-CD (Security Mgr.)
Adelphi, MD 20783-1145 Fort Benning, GA 31905-5660

2 Commander (u"-'. ca.y) 1 Commandant
US Army, ARDEC US Army Infantry School
ATIN: SMCAR-IMI-I ATIN: ATSH-CD-CSO-OR
Picatinny Arsenal, NJ 07806-5000 Fort Benning, GA 31905-5660

2 Commander I Air Force Armament Laboratory
US Army, ARDEC ATIfN: AFATLIDLODL
ATTN: SMCAR-TDC Eglin AFB. FL 32542-0
Picatinny Arsenal, NJ 07806-5000

1 DirectorAberdeen Proving Groud
Director
Benet Weapons Laboratory 2 Dir, USAMSAA
US Army, ARDEC ATIN: AMXSY-D
ATTN: SMCAR-CCB-TL AMXSY-MP, H. Cohen
Watervliet, NY 12189-4050 1 Cdr, USATECOM

ATIN: AMSTE-TD
Commander 3 Cdr, CRDEC, AMCCOM
US Army Armament, Munitions ATTN: SMCCR-RSP-A

and Chemical Command SMCCR-MU
ATTN: SMCAR-ESP-L SMCCR-MSI
Rock Island, IL 61299-5000 1 Dir, VLAMO

ATTN: AMSLC-VL-D
I Commander

US Army Aviation Systems Command
ATTN: AMSAV-DACL
4300 Goodfellow Blvd.
St. Louis, MO 63120-1798

23



No. of No. of
Co2s Oro-anization Coni es nion

Commander
US Army Materiel Command
ATTN: AMCAE (C. Chapin)
5001 Eisenhower Avenue
Alexandria, VA 22333-0001

2 Commandant
USAFAS
AT N: ATSF-CCS

ATSF-CCC
Fort Sill, OK 73503

Director
DCD
ATrN: ATZQ-CDC-LX (Mr. Trimble)
Fort Rucker, AL 36362-5194

Director
DCD
ATITN: ATZQ-TSM-LH (COL MacWillie)
Fort Rucker, AL 36362-5194

Aberdeen Proving Ground

9 Dir, USAMSAA
ATTN: AMXSY-AD

AMXSY-AA
AMXSY-GS
AMXSY-GC
AMXSY-CC (Sandmeyer)
AMXSY-CA (Kunselman)
AMXSY-RM (Woodworth)
AMXSY-CA (O'Neil)
AMXSY-MP (Grubbs)

24



USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports It publishes.
Your comments/answers to the items/questions below will aid us in our efforts.

I. BRL Report Number BRL-TR-3117 Date of Report JUL 90

2. Date Report Received ,

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of test
for which the report will be used.)

4. Specifically, how is the report being used? (Information source. design data, procedure. source
of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars
saved, operating costs avoided, or cfficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate
changes to organization, technical content, format, etc.)

Name

CURRENT Organization
ADDRESS

Address

City. S"ate, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the New or Cnrrcct
Address in Block 6 above and the Old or Incorrect address below.

Namc

OLD Organization
ADDRESS

Address

City, State, Zip Code

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)


